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Numerical experiments are described to ascertain how the steady flow past a circular 
cylinder loses stability as the Reynolds number is increased. A novel feature of the 
present study is that the cylinder is confined between parallel planes, allowing a more 
definitive specification of the flow, both experimentally and computationally, than is 
possible for the unbounded case. Since the structure of the bifurcation is unclear from 
the extant literature, with the experimental and computational evidence not in good 
agreement, a critical appraisal of both sets of evidence is presented. 

A study has been made of the formation of the steady vortex pair behind the 
cylinder, and it has been determined that the first appearance of the vortices is not 
associated with a bifurcation of the full dynamical problem but instead it is probably 
associated with a bifurcation of a restricted kinematical problem. 

A set of numerical experiments has been made in which the steady flow past the 
cylinder was perturbed slightly and the ensuing time-dependent motions were 
computed. These experiments revealed that, for a given blockage ratio, the perturbation 
would die away at small Reynolds numbers but that, above a critical Reynolds number, 
the disturbance would be amplified and the flow would eventually settle down to a new 
state comprising a time-periodic motion. 

Experiments were also carried out to determine the bifurcation point numerically by 
considering an eigenvalue problem based on a linearization about the computed steady 
flow past the cylinder. The calculations showed that stability is lost through a 
symmetry-breaking Hopf bifurcation and that, for a given blockage ratio, the critical 
Reynolds number was in very good agreement with that estimated from the time- 
dependent computations. 

1. Introduction 
The flow generated by a cylinder or sphere moving at a steady speed through a fluid 

provides one of the classic problems of fluid mechanics. In particular, the way in which 
the steady flow seen at small speeds loses its stability has always been an issue of 
fascination, with the experimental evidence strongly suggesting that stability is 
exchanged for a time-periodic motion at a Reynolds number of about 35 in two 
dimensions and in the range of 120 to 190 for flow past a sphere. Here the Reynolds 
number R is defined in terms of the diameter of the body. Interestingly, the 
experimental observations do not give a clear picture of the nature of the bifurcation 
in either the two- or the three-dimensional case, as illustrated by the following 
commentary from Batchelor’s (1967, p. 260) text, talking about flow past a cylinder: 
‘At a value of R between 30 and 40, the steady flow appears to become unstable to 
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small disturbances; . . . In the present case, the instability first affects the wake, at some 
distance downstream from the cylinder, and gives rise to a slow oscillation of the wake, 
approximately sinusoidal in both time and stream-wise distance, with an amplitude 
which increases with distance downstream. . . . As R increases, beyond the critical value 
at which instability first appears, the oscillation in the wake moves closer to the 
cylinder and, when R is near 60, begins to affect the two standing eddies immediately 
behind the cylinder.’ It is apparent from this commentary that the experimental 
situation is a rather difficult one to control accurately and that the interpretation of the 
observations could involve several subtleties. Moreover, recent numerical experiments 
in two dimensions have not particularly helped clarify the situation. For example, 
Jackson (1987) estimated the bifurcation point, for a special flow configuration, to be 
at a Reynolds number of approximately 46.2, well in excess of the experimental values, 
though his calculations did show that the exchange of stability occurs through a Hopf 
bifurcation to time-periodic motions. 

There are, however, several obstacles to making close comparisons between 
experiment and theory for exterior flows, most of which derive from the desire to 
simulate the flow in a domain unbounded in all directions, which conditions cannot 
obtain experimentally anyway. Simulation of the pure exterior flow problem poses 
considerable computational difficulties, principally because there are only partial 
estimates for the decay of solutions of the Navier-Stokes equations at large distances. 
Accordingly, there is no way of knowing how to truncate the flow domain for 
computational purposes so as to provide a provable approximation to the flow in the 
unbounded domain. For example, Jackson (1987) made his computations in a 
rectangular domain of height 10 units and length 20 units relative to the diameter of 
the cylinder. On the inlet boundary he imposed Dirichlet data on the velocity u (with 
components (u, v) in the respective (x, y )  directions) such that u = (1,O) at x = - 5. On 
the horizontal boundaries of the box, at y = k 5 ,  he set u = (1,O) and, on the outlet 
boundary, he set p +&/ax = 0 and &/ax = 0. Similar kinds of boundary conditions 
have been used by several other authors in related contexts and though they may well 
provide some kind of approximation to the exterior flow problem it is not clear, 
especially with regard to the imposition of the downstream conditions, precisely how 
they relate to the full problem. 

For these reasons we have taken a different view of the situation and decided to 
consider a flow problem that can be accurately simulated, both experimentally and 
computationally, but which preserves the essential features of the aforementioned 
exterior flows. To do this we have relaxed the constraint that the flow be unbounded in 
all directions, and have placed the body between plane parallel walls which may, 
however, be considered to be unbounded in the direction parallel to the walls. In three 
dimensions, our approach would be to place the body within a cylindrical tube. 

The theoretical situation for flows in certain classes of pipes and channels is well 
established (see Amick 1977, 1978, and Amick & Fraenkel 1980) in that it is possible 
to establish the existence of a solution to the Navier-Stokes equation for such flows 
over a substantial range of Reynolds numbers. In the event that the channel or pipe 
approaches a uniform width far upstream and downstream, Amick (1978) showed that 
the velocity fields approach the appropriate Poiseuille distribution and that the rate of 
approach is exponential, at least when the Reynolds number is not too large. The 
exponentially fast approach upstream and downstream of such flows to their 
asymptotic states means that, by introducing and removing the fluid through 
sufficiently long uniform regions, it is possible to obtain a very close approximation to 
the flow in the unbounded domain by considering a flow in a bounded domain. In other 
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words, the numerical calculations to be described are, in principle, amenable to 
empirical testing, limited only by the accuracy with which the experiment is carried out. 
These principles are at the heart of the design of the present numerical experiments, 
and also of some empirical measurements concerning flow past a sphere described 
briefly in Pritchard (1983). 

The main purpose of this paper is to make some firm predictions concerning the way 
in which the steady flow past a cylinder at small Reynolds numbers loses stability as 
the Reynolds number is increased. The predictions made here could be subject to direct 
experimental verification and, moreover, should shed light on the corresponding flow 
problem in the unbounded domain. We shall describe numerical results obtained using 
four different numerical schemes, providing internal consistency checks on our 
computations, and enabling us to examine different properties of the flow field. Initially 
we shall describe some results concerning the properties of the steady vortex pair 
attached to the rear of the cylinder and an estimate of the Reynolds number at which 
they first appear as the flow rate is increased. The results of such a study are quite useful 
in that they allow us to assess the properties of the numerical procedures as well as 
providing a basis of comparison of computed flows between parallel planes with 
experimental results obtained in essentially unbounded domains. Then we shall 
describe some apparently periodic solutions to the Dirichlet problem for the 
Navier-Stokes equation posed in a channel of specified length. By examining carefully 
the properties of these flows as a function of Reynolds number we have been able to 
make an estimate of the critical Reynolds number above which such flows are possible. 
Finally we shall present the results of some eigenvalue calculations used to provide a 
more definitive estimate of the bifurcation point, the results of which are in good 
agreement with the aforementioned time-dependent studies. The ENTWIFE code used for 
the bifurcation studies was also used, in an earlier version, by Jackson in his 1987 
studies. Thus, we have recomputed the problem considered by Jackson, as a point of 
reference, and to check the importance of the length and height of the domain to the 
computed bifurcation point. 

2. Survey of experimental results 
There have been many experiments concerning the flow past a circular cylinder at 

small Reynolds numbers, including those by Taneda (1956a), Tritton (1959), Nishioka 
& Sat0 (1974), Coutanceau & Bouard (1977a, b) and Gerrard (1978).? 

Taneda’s (1956~) experiments were made in a water tank through which a cylinder 
was towed. Measurements were made of the length of the steady wake behind the 
cylinder as a function of the Reynolds number R and of the wavelength of the 
oscillations in the wake at Reynolds numbers above that at which the flow became 
unsteady. The tank had a length of 1 m and cross-section 200 x 300 mm, and the 
diameters of his cylinders ranged between 6.00 and 1.02 mm, and their lengths were 
such that the aspect ratios ranged between 50 : 1 and 176 : 1 respectively. For the largest 
cylinder the walls of the tank were at a distance of 16.5 diameters and for the smallest 
cylinder they were at 98 diameters. From the experiments it was estimated that the 
steady vortex pair first appeared behind the cylinder at a Reynolds number of 

7 One of the referees suggested referring to a paper by Provansal, Mathis & Boyer (1987) who 
made measurements of the critical Reynolds number in a wind tunnel. Unfortunately the motions had 
a significant three-dimensional component with extrapolation being needed to an infinite aspect ratio 
from values of 10.0, 12.5 and 16.7, and so the critical value for two-dimensional flows must have a 
large subjective component to it. 
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approximately 5. These became more and more elongated as R was increased until R 
reached the value of about 45. However, at R % 30, small sinusoidal oscillations were 
observed in the wake some distance downstream from the vortices. For values of R 
exceeding 35 Taneda reported that ‘Tiny irregular gathers appear in the boundary of 
the twin-vortices, move downstream along the boundary-line till they reach the rear 
end of the twin-vortices, tremble for a short time and are died away.. . . At Reynolds 
numbers above 45 the gathers of the twin-vortices are elongated along the trail, shed 
alternately from each of the twin-vortices and pass downstream, where they arrange 
themselves in a configuration corresponding to that of a Karma, vortex street’. 

In the experiments of Coutanceau & Bouard ( 1 9 7 7 ~ ~  b) the flow generated by a 
cylindrical rod rising broadside at constant speed in a cylindrical tank of large diameter 
(420 mm diameter x 1 m in height) was observed. The tank was filled with an oil having 
a kinematic viscosity of approximately thirty times that of water. The cylindrical rods 
used in the experiments had diameters 10.1, 29.4 and 50.4 mm. Careful measurements 
were made of the properties of the attached vortices immediately behind the cylindrical 
rod, including their development in time from the sudden initiation of the motion of 
the rod. Coutanceau & Bouard concentrated their attention mainly on the attached 
vortex pair immediately behind the cylinder and estimated that the vortex pair would 
first appear, for a rod in an unbounded flow, when the Reynolds number is increased 
above a value of about 4.5, in good agreement with the measurements of Taneda 
(1956~). As the Reynolds number was further increased they estimated that ‘the upper 
limit of wake stability’ (‘critical Reynolds number’) was approximately 39.5 in the case 
of the 29.4 mm rod. Interestingly, they characterized the critical Reynolds number by 
a loss in symmetry of the vortex pair: ‘ . . . the wake boundary begins to warp towards 
its rear end and the distances between each of the cores and the rear stagnation point 
become different ’. 

The experiments of Gerrard (1978) were similar in concept to those of Taneda 
(1956~). They were carried out in a towing tank of length 4 m, width 750 mm and 
depth 460 mm, which was filled with water. The cylinders used in these experiments 
had diameters 25.4, 12.65, 10.3, 6.3 and 4.7 mm. They were mounted on a towing 
carriage with their axes vertical and moved at steady speed along the centre of the tank. 
In trying to estimate the critical Reynolds number at which time-dependent flows first 
appeared, Gerrard made the following comment: ‘In view of the sensitivity to 
disturbances any determination of the Reynolds number for what might be called the 
onset of oscillations is likely to be inaccurate and a function of the particular 
experimental arrangement ’. Gerrard estimated the critical Reynolds number at which 
unsteady flows first appear to be about 34, and at R = 37.8 he describes the flow in the 
vortex pair immediately behind the cylinder to be unsteady, but there was no indication 
of the formation of a vortex street under these conditions. 

It is thus seen from the above discussion that, while the various experimenters are 
all in general agreement with each other, the details of the wake region near the critical 
Reynolds number for the onset of unsteady flows would appear to be sensitively 
different from experiment to experiment (cf. the comments of Gerrard). In particular, 
Coutanceau & Bouard point to the formation of a steady non-symmetrical vortex pair, 
whereas Gerrard found this region to be unsteady. One issue about which all authors 
appear to agree is that the critical Reynolds number for the formation of unsteady 
flows is in the mid to upper 30s, which values would appear to be significantly different 
from the 46.2 predicted by Jackson (1987). It is evident that the issues associated with 
this bifurcation are delicate enough, even to the point of questioning whether, in an 
unbounded domain, the exchange of stability occurs via a Hopf bifurcation or via a 
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symmetry-breaking bifurcation to a steady flow, with a subsequent secondary 
bifurcation to a Hopf flow. The latter proposition would not be out of keeping with 
the description given by Coutanceau & Bouard (1977~). Also it has been found by 
Fearn, Mullin & Cliffe (1990) for the sudden expansion between parallel plates, that the 
bifurcation is to a steady symmetry-breaking flow. 

The bifurcation structure is, if anything, less clear for the analogous situation of flow 
past a sphere. Taneda’s (1956b) experiments, made by towing a sphere, indicated 
oscillations in the wake region at Reynolds numbers exceeding 130. Then, in 1976, 
Nakamura made observations of the wake behind a sphere steadily falling in water and 
found the wake to be symmetrical and steady at Reynolds numbers up to values of 
approximately 190, at which point the wake became distinctly non-symmetrical but the 
flow remained steady. Supporting the conclusions of Nakamura (1976), Wu & Faeth 
(1993) observed the wake of a towed sphere to be symmetrical and steady for Reynolds 
numbers less than 200, and to be steady but asymmetrical for Reynolds numbers 
between 200 and 280. The results of numerical studies made by Kim & Pearlstein 
(1990), using a modal decomposition to affect a linear stability analysis, indicated a 
symmetry-breaking bifurcation of Hopf type at a Reynolds number of approximately 
175.1. By contrast, some recent calculations by Natarajan & Acrivos (1993), using 
similar methods, indicate that the first instability has the same azimuthal wavenumber 
as that predicted by Kim & Pearlstein but that the bifurcation is to a non-symmetrical 
steady flow, occurring at Reynolds number 210. 

3. The mathematical problem to be solved 
The mathematical problem under consideration is that of finding the velocity, 

u(x, t )  = (u, v), and the pressure, p ( x ,  t) ,  as functions of position x = (x, y )  and time t ,  
which satisfy the incompressible Navier-Stokes equations 

and v - u  = 0. (2) 

Equations (1) and (2) are to be solved on a domain D c R2, a typical example of which 
is sketched in figure 1. A circular cylinder, of diameter d,  is centrally located between 
two parallel planes separated by unit distance. The domain has length L and the 
cylinder is located a distance L, from the upstream boundary, through which fluid is 
introduced to the flow domain. 

Two different kinds of problem will be considered. The first, which represents flow 
between solid plane boundaries, will form the basis for the bulk of our calculations. 
For this class of flows we shall specify Dirichlet data (namely a parabolic horizontal 
velocity profile and zero vertical velocity) on the upstream boundary AB. On the 
horizontal boundaries AD and BC, and on the boundary of the cylinder we shall 
impose no-slip Dirichlet data, and on the downstream boundary either Dirichlet or 
Neumann-type conditions will obtain. The second class of flow problems to be 
considered are intimately related to the problem considered by Jackson (1987) and 
outlined briefly in 0 1. These problems are meant to simulate flow in an unbounded 
domain and will be used here mainly as a point of comparison with Jackson’s study. 

Let us suppose that the flux of fluid across the upstream boundary is Q and let the 
fluid viscosity be v. Then the non-dimensionalization pertaining to (1) has the Reynolds 
number R = Q / v ,  all lengths are scaled with respect to the distance between the plane 
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FIGURE 1. Schematic representation of the computational domain. 

walls and time is scaled by Q-l. In some circumstances it will also be convenient to 
quote a Reynolds number, R, = U, d/v, based on the cylinder diameter, where 

Here u is the horizontal component of the velocity field specified on the upstream 
boundary. The Reynolds number R, is useful when making comparisons with 
experimental results obtained on what are effectively unbounded domains. 

In most of the calculations to be presented we shall be interested in solutions to and 
bifurcation analyses for the steady problem defined by (1) and (2), but in $6 the results 
of some time-dependent calculations will be reported. 

4. Numerical methods 
We wish to solve the Navier-Stokes equations (1) and (2) with Dirichlet boundary 

conditions u(x) = g(x) imposed on part of the boundary aQ, and Neumann conditions 
on the remainder of the boundary aQ,. (We assume that the boundary aQ is 
partitioned into two disjoint sets aQd and 8 2 %  whose union comprises the entire 
boundary.) 

The usual variational formulation for the steady version of the Navier-Stokes 
equations is derived by taking the dot-product of equation (1) with an appropriate 
vector function v ,  and the scalar-product of (2) with a suitable scalar function q, 
integrating the equations over the domain Q and integrating by parts where 
appropriate. The resulting equations are 

and 

a(u, v )  + b(v,p)  + c(u, u, v )  = 0, 

b(u, 4) = 0, 

where the various forms are defined by 

" "  

(3) 

(4) 
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An appropriate choice for the functions u and q is that they belong to the spaces V and 
l7, where 

V :  = { u  E W,l(Q) : u = 0 on aQ,}, (8) 

and (9) 

Here L2 and Wt respectively denote the usual Sobolev spaces of square-integrable 
functions and of functions whose first derivatives are square-integrable. With the above 
definitions and the space 

V,:= { V E  W,l(Q): v = g on aQ,}, (10) 

it can be shown (e.g. see Gunzburger 1989) that u andp can be characterized as solving 
the following variational problem. 

Find U E  V,  and ~ € 1 7  with the property that (3) and (4) hold for all U E  V and for all 
q E n .  

Discrete versions of (3) and (4) can be realized by appropriate choices of discrete 
counterparts of the spaces V, V ,  and 17 defined in (8), (10) and (9). A number of 
different methods have been used in the present study. They were as follows. 

(i) The so-called Taylor-Hood method (see Taylor & Hood 1973), based on a 
triangulation of the domain and using Co,  piecewise quadratic functions, to 
approximate the velocity space, and Co,  piecewise linear functions to approximate the 
pressure space. The method was used within the code FIDAP (see Engelman 1982). Some 
convergence studies of this implementation are reported in Pritchard, Scott & Tavener 
(1992). 

(ii) The P,' - PI method of Crouzeix & Raviart (see Crouzeix & Raviart 1973). This 
method, also based on a triangulation of the domain, uses the same approximating 
functions as for the Taylor-Hood method, but the velocity space is augmented by a 
'bubble ' function on each triangle, a polynomial of degree three which vanishes along 
the triangle sides. The method is implemented in FIDAP. 

(iii) The 4 -4 method of Crouzeix & Raviart (see Crouzeix & Raviart 1973). This 
method is based on a triangulation of the domain and uses piecewise linear functions, 
continuous at triangle midpoints only, to approximate the velocity space and 
discontinuous piecewise constant functions to approximate the pressure space. This 
method was implemented within an in-house code, details of which may be found in 
Lodge, Pritchard & Scott (1991). 

(iv) A method developed by Bercovier & Engelman (1979), based on a 
quadrilateralization of the domain. The method uses Co, piecewise quadratic functions 
to approximate the velocity space and discontinuous piecewise linear functions to 
approximate the pressure space. This method was used for the stability and bifurcation 
computations, and is implemented in the code ENTWIFE (see Winters 1985). 

Note that methods (i), (ii) and (iv) use isoparametric elements. Penalty methods were 
employed to enforce the divergence condition in (i) and (ii); in (iii) the velocity space 
was constructed to be divergence free on each triangle; (iv) is solved via a mixed 
method. 

For the time-dependent calculations to be reported in $6 the Taylor-Hood method 
(i) was used for the spatial discretization and the time-stepping was effected via a 
Crank-Nicholson method. 

In order to carry out the eigenvalue calculations to be described in $7 we assume 
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(u,,p,) to be a steady solution of (3) and (4), and consider perturbations about this 
solution of the form 

(1 1) 
where 0 < e $ 1 ,  U , E  V , p , ~ 1 7 ,  and y is a complex constant. Substituting into (3) and 
(4) and retaining terms up to order c, the equations governing the perturbation are 

(U0,PO) + 4% exp (- rt>, P1 exp (- rt)), 

R[ -YU, + (u,-V) U, + (u1*V) u,] = -Vpl + Au, (12) 

and v-u ,  = 0. (13) 
A weak formulation of (12) and (1 3) is developed in the same manner as for (3) and 

-y(u,, 4 + a(u,,v> + b(v,p,)  + c(u,, u,, v )  + c(u,, u,, 0 )  = 0, (14) 

and b(u,,q) = 0, (15) 

(4), resulting in the equations 

where 

Using mixed finite elements to solve (14) and (1 5) results in a generalized eigenvalue 
problem. Let w E R" be the vector of nodal freedoms defining the velocity perturbation 
u1 and let p E Rz be the vector of freedoms defining the pressure perturbation p l .  The 
discretized form of (14) and (15) is then 

where K is a (k  x k) sparse non-symmetric matrix, C is a (k  x I) matrix of rank I ,  and 
M is a ( k x k )  symmetric matrix. The eigenvalue problem (16) is real but non- 
symmetric, hence eigenvalues will be either real or occur in complex-conjugate pairs. 
Accordingly, there is a need to locate the eigenvalue(s) with smallest real part for any 
given flow rate. In the present calculations this has been achieved by the use of a 
mapping (a Cayley transform) of the complex plane and then using subspace-iteration 
techniques to determine the most dangerous eigenvalues. Details of the methods are 
described in Cliffe, Garratt & Spence (1993). 

A range of Reynolds number was determined over which a single complex-conjugate 
pair of eigenvalues was observed to cross from the stable right-half to the unstable left- 
half complex plane, all other eigenvalues being stable. The location of the Hopf 
bifurcation point was then computed as a regular solution of the extended system of 
Griewank & Reddien (1983). A mixed finite-element discretization of the time- 
dependent version of (3) and (4) results in a (k  + I)-dimensional vector equation of the 
form 

(17) 
dx 
dt 

B-++~(x; R) = 0, 

where x E R"+' is the vector of nodal velocity and pressure freedoms, f: R"+' + R"+' is 
a nonlinear vector-valued function and B is a ((k + I )  x (k + I)) matrix. The location of 
the Hopf bifurcation point, for which the null eigenvalue is y = O+iw and the null 
eigenvector is a + ib, may be computed by solving 

fx(X; R) u - UBb 

fJx; R) b + wBa 
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Here fx is the Jacobian matrix af/lax and I is a vector with which to normalize the 
eigenvector components a and b. 

An initial guess to start the Newton iteration to solve the nonlinear system (18) was 
provided by the solution to the Navier-Stokes equations, the imaginary part of the 
single eigenvalue pair with negative real part and the corresponding (complex) 
eigenvector. 

5. Properties of attached vortices 
The computations to be described in this section concern the steady flows that arise 

at moderately small Reynolds numbers, with particular interest in the formation and 
properties of the steady vortices attached to the lee of the cylinder. All the calculations 
were carried out using Dirichlet velocity data on the downstream boundary CD (cf. 
figure 1) of exactly the same form as that specified on the inlet boundary. The no-slip 
condition was imposed at the sidewalls. 

As the Reynolds number is increased from zero the flow develops a slight fore-and- 
aft asymmetry (with respect to the cylinder) until, at some critical Reynolds number, 
a pair of steady vortices appear at the rear of the cylinder. Such an abrupt change in 
topology of the observed flow field has many of the hallmarks of a bifurcation of the 
solution of the dynamical flow problem. However, that appears not to be the case, 
based on our numerical studies in which the eigenvalue structure was examined for the 
flow perturbed about the numerically computed solution at a given Reynolds number. 
This was done using an in-house code based on the Crouzeix-Raviart method (cf. $4) 
and using the ENTWIFE code. In the former case the sign of the determinant of the 
Jacobian associated with the perturbed problem was examined as a function of the 
Reynolds number and showed no evidence of there being a singular point in a range 
of Reynolds numbers spanning the critical value at which the vortices first appeared. 
This finding was also confirmed by the studies with ENTWIFE in which the most 
dangerous eigenvalue of the perturbed problem was determined, and again there was 
no evidence whatsoever of any eigenvalue crossing into the unstable half-plane. 
Therefore, it would appear that the formation of the attached vortices is not associated 
with a bifurcation of the solution of the dynamical problem. It does, however, seem as 
though the dramatic change in structure of the flow field when the vortices first appear 
has a simple explanation in terms of singularity theory. If we consider only the 
kinematical properties of the flow it follows, for steady flows in two dimensions, that 
the stream function $ is a Hamiltonian for the system 1 = $y and j = -$%, and the 
formation of the vortices would appear to be associated with a critical point of the 
dynamical system for $. Thus, on passing through this critical point, the two new 
separation points on the body correspond to (half) saddle points, the new stagnation 
point downstream of the cylinder corresponds to a saddle point and the eyes of the 
vortices correspond to two elliptic points of the system, indicating that the topological 
change of the flow field is a property only of the kinematics and is not associated with 
a critical point of the dynamical problem. 

The computations to be described in this section of the paper were carried out using 
the code FIDAP. Several convergence tests on this code are reported in Pritchard el al. 
(1992) and some further studies of its efficacy have been carried out by Chen (1990). 
Most of the results to be described were made using the Pl-P, method of 
Crouzeix-Raviart, but some comparisons and checks were also made using the 
Taylor-Hood element. It was found in the computations that great care was needed in 
constructing the mesh in order to obtain the desired accuracy for the calculations, 
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FIGURE 2. The length 1 of the recirculation zone as a function of the Reynolds number R for a 
cylinder of diameter d = 0.2. 

particularly when trying to resolve the extent of the recirculating region behind the 
cylinder. So, for example, quite different kinds of triangulation strategies were needed 
with small cylinder diameters - d = 0.1 or 0.2 - than were needed with moderate (d - 
0.5) or large (d - 0.8) cylinder diameters, details of which are given by Chen (1990). 

The main characterization we have used for the recirculating region was the distance 
of its rear stagnation point from the cylinder, which distance we shall denote by I ;  we 
shall assume that I has been scaled relative to the cylinder diameter d. It is important 
to choose the length L of the domain and the placement of the cylinder in the domain 
such that neither the upstream nor the downstream computational boundaries 
influence the value of I to a noticeable extent. Preliminary investigations indicated that 
the value of I was less sensitive to the proximity of the upstream boundary than to the 
downstream boundary. A good balance seemed to be achieved with L, = iL, and we 
have used this apportionment throughout the current set of experiments. Accordingly, 
it was found in a series of experiments at R = 80 and with d = 0.5 that the length of 
the recirculating region was independent (to four decimal places) of the domain length 
L for values of L exceeding 7.5. The results to be described below, made at much 
smaller values of R, used the value L = 6.  

In all of our numerical experiments it was found, to a very good approximation, that 
I increased nearly linearly with R, at least for values of I up to 0.2. Indeed, noticeable 
deviations from such a linear variation were always found to be associated with 
insufficiently accurate calculations. This was particularly so at very small values of I 
when an inordinately large number of mesh points was needed immediately behind the 
cylinder to resolve properly the details of the recirculating zone. An example, typical 
of all our numerical experiments, of the computed variation of I ,  for a cylinder of 
diameter d = 0.2, is shown in figure 2. The straight line shown in this graph is a linear 
least-squares regression fit of the data points for I > 0, and it is seen how closely they 
conform to the linear growth rate. Figure 2 shows that the smallest non-zero value of 
I lay slightly below the regression curve, and we believe, on the basis of our many other 
numerical experiments at different values of d, that a yet more accurate calculation 
would have moved the point close to the regression line. Note that the computation 
made at R M 30.0 gave no evidence of a recirculating region, further suggesting that the 



Bifurcation for  flow past a cylinder between parallel planes 33 

0.2 0.4 0.6 0.8 1 .o 
d 

FIGrrRE 3. The critical Reynolds number (Rd)v at which the recirculation zone was established as a 
function of the cylinder diameter d. The heavy line between 4 and 6 on the ordinate indicates the range 
of experimental estimates for the critical Reynolds number in unbounded flows. 

d RV (Rd)" P 
0.10 46.1 6.9 0.000966 
0.20 31.6 9.3 0.00301 
0.30 28.1 12.2 0.00484 
0.40 26.1 14.8 0.00644 
0.50 24.3 16.8 0.00776 
0.60 23.0 18.2 0.009 3 1 
0.70 21.7 19.1 0.0107 
0.80 21.0 19.8 0.01 19 
0.90 20.4 20.1 0.0130 
0.95 20.4 20.3 0.0138 

TABLE 1. The critical Reynolds numbers R, and (Rd),  for the formation of the steady recirculation 
zone behind the cylinder. The quantity P denotes the (linear) rate of change of I with R. 

intercept of the linear regression with the R-axis should have given a fairly accurate 
estimate of the critical value of R, which we shall denote by R,, for the incipience of 
the vortices. 

A summary of the main experimental results is given in table 1. In this table we have 
quoted the critical Reynolds number based on the separation between the walls and 
also the critical value of R, based on the diameter of the cylinder. Also shown in the 
table is our estimate of the rate of growth of the vortex region with R, at least for 1 not 
too large. A graph of (R& as a function of the cylinder diameter is given in figure 3 ,  
from which it is seen that the numerical estimates for the critical Reynolds number are 
apparently not far out of line with the experimental estimates obtained using very small 
values of d (i.e. in what are essentially unbounded domains). 

6. Some periodic solutions 
As R was increased in our numerical experiments it was found that the steady flows 

of the kind described in $ 5  could lose stability to a time-periodic flow. We shall 
consider some of the properties of such flows in this section and then, in $7, we shall 
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FIGURE 4. The velocity u computed at x = (0.1 148,O) as a function of time, for a cylinder with d = 
0.2. (a) Early phases in the development of u shown for a variety of Reynolds numbers. (b) Longer- 
term evolution of u at R = 250. 

describe the results of sensitivity (bifurcation) studies relating closely to the present set 
of computations. 

The numerical solutions to be described were all obtained on a flow domain of length 
L = 9, with L, = 3 (though it should be noted that confirmation of the general 
outcome of our experiments was obtained on longer domains). The boundary 
conditions used for the calculations were of Dirichlet type on both the inlet and outlet 
boundaries, with the velocity field being prescribed as (i - y 2 ,  0). Thus the Reynolds 
number for the flow is R = 1/(6v). In an attempt to locate new flows, either steady or 
unsteady, that would break the symmetrical structure in y enjoyed by the flows at small 
R, the following experiment was carried out. At a specified Reynolds number a 
computation was made of the (possibly unstable) steady, y-symmetric flow, the velocity 
and pressure fields of which were used as initial conditions for the following time- 
dependent computations: during the very early stages of the calculations, a small 
controlled perturbation was introduced to the flow via a perturbation of the boundary 
data, achieved by rotating the cylinder about its axis for a short period of time and then 
bringing it back to rest. Specifically, the boundary conditions at the surface of the 
cylinder were those of a uniform rotation for which the surface velocity V took the 
form V = sin xt,  for 0 < t < 1, and V = 0 thereafter. (We also experimented with 
other kinds of perturbations, which led to similar outcomes to those to be described, 
but a simple rotation of the cylinder was the most effective, introducing non- 
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FIGURE 5. (a) Estimates of the initial growth rates (a) of the local maxima of logv (denoted by 
(logv), at a variety of Reynolds numbers, for a cylinder with d = 0.2. The straight lines are least- 
squares interpolations of the relevant data points. (b)  The growth rates a plotted as a function of R. 

symmetrical disturbances to the flow that would immediately affect the wake region.) 
The computations were carried out using the so-called Taylor-Hood element (cf. $4) 
for the spatial discretization and the Crank-Nicolson method was used for time 
stepping. The time step was fixed at 0.1 for 0 < t < 1 and was set at values between 0.20 
and 0.25 for larger times. 

Numerical experiments have been carried out using cylinders of diameter d = 0.2,0.5 
and 0.7. The phenomena observed in each case bore close similarities, so we shall here 
describe in detail only the results for the case d = 0.2. The meshes used for these 
computations had approximately 10 000 degrees of freedom. Shown in figure 4(a) are 
temporal traces, found at a variety of Reynolds numbers, of the vertical velocity u at 
the point x = (0.1148,0), on the axis immediately behind the cylinder. It is seen that, 
initially, u suffered a rather violent disturbance but, for t in excess of about 5, was nicely 
ordered with respect to t. An example of a longer temporal integration at R = 250 is 
shown in figure 4(b), the results of which suggest that the flow would have eventually 
settled down to a time-periodic motion. 

Restricting attention to the smaller values of t for figure 4(a), it is seen that, at the 
smaller values of R, the velocity component u decayed towards zero whereas, at the 
larger values of R, it increased. The growth or decay of these disturbances were found 
to be nearly exponential in time, with growth rate a, say, as indicated by the plot shown 
in figure 5(a) of the local maxima of logv as a function of t. (The local maxima were 
determined from the discrete values of u by an interpolation procedure.) Here the lines 
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(4  

FIGURE 6. Streamline patterns at three different phases of a cycle of the relatively mature flow 
computed at R = 250 at a blockage ratio d = 0.2. Shown here is the portion of the computational 
domain such that - 1 .O < x < 2.0. (a) Time t = to x 220; (b)  t = to + 1.7; (c) t = to + 3.4. Approximate 
period of cycle was 5.15. 

joining the various data points are least-squares regression fits of the relevant data, and 
it is seen that they did indeed conform closely to a linear variation, once the initial 
hiatus produced by the rotation of the cylinder had subsided. The actual values of a 
thus obtained are indicated in figure 5(b). The data suggest that, for R less than 
approximately 23 1, the initial disturbance eventually decayed away and the original 
flow was re-attained, but for larger R the disturbances grew, giving rise to a new 
unsteady flow. We shall see in $7 that the present findings are in close agreement with 
the results of a numerical bifurcation study of the flow. 

Streamline patterns of computed flows at three different phases of a cycle are shown 
in figure 6, indicating the oscillatory nature of the recirculating flow immediately to the 
rear of the cylinder. Some waviness of the streamline pattern downstream from the 
cylinder is evident, resulting from the detachment of a vortex blob, but it is also seen 
how the presence of the sidewalls eventually dominates the downstream properties of 
the flow field. Note that, for figure 6, the computational domain extended in the 
downstream direction to x = 6. The flow patterns shown here are slightly unusual in 
that they depict an asymmetric unsteady motion arising from the solution of a flow 
problem posed with steady symmetric Dirichlet data everywhere on the boundary of 
the flow domain. 

Although the motions shown in figure 4 are not strictly periodic, the time between 
zero crossings of the vertical velocity field was found to be remarkably constant from 
cycle to cycle. Let this time interval be denoted by T .  For a cylinder of diameter d = 

0.2 the period T was estimated to be 5.15 for R = 240 and 250, leading to a Strouhal 
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number d/ TU, of approximately 0.17, to be compared with the experimental value of 
0.15 found for flows in unbounded domains. For a blockage ratio d = 0.5 the Strouhal 
number for unsteady solutions slightly in excess of the critical Reynolds number was 
found to be approximately 0.36. For d = 0.7 it was found to be approximately 0.60. 

7. Numerical bifurcation studies 
Experiments were carried out to determine numerically the mechanism by which the 

small-Reynolds-number solution loses stability. These experiments were made using 
the sensitivity-analysis facility embodied in the code ENTWIFE, as described in $4. The 
numerical studies undertaken here were closely related to those described above in $6, 
The only difference being in the conditions imposed on the outflow boundary (CD of 
figure 1). For the computations described in $6, Dirichlet data were imposed on the 
outflow boundary, and here we have used the natural boundary conditions associated 
with the finite-element method we have employed (cf. the discussion in 94). (Attempts 
were made to carry out the bifurcation analysis using Dirichlet data, but these proved 
to be unsuccessful.) It should, however, be noted that, if the domain was chosen to be 
sufficiently long, the velocity profile recovered on the outlet boundary, resulting from 
the imposition of the natural boundary conditions, conformed closely with the 
Dirichlet conditions used in $6, and in that sense the two computations are closely 
related. One general point of agreement between the experiments of $6 and the present 
eigenvalue calculations is the feature that, in all cases, the bifurcation of the primary 
solution was to a Hopf flow, breaking both the symmetry and the time independence 
of the solution. 

Eigenvalue analyses have been carried out with cylinders whose diameters ranged 
between 0.1 and 0.7. A typical mesh, on a domain of length L = 10.5, with L, = 3, is 
shown in figure 7 for a cylinder with d = 0.4. (Note that the finite-element method used 
for these calculations was based on a quadrilateralization of the domain.) Near the 
cylinder there is a radial gradation of the mesh, and away from the cylinder the mesh 
is also graded in both the upstream and downstream directions. The discrete 
approximation associated with such a mesh, which had approximately 13 000 degrees 
of freedom for the velocity and pressure fields, was near the upper limit of the size of 
calculation possible on our machines. We believe that the eigenvalues presented below 
are within 1 % of the fully converged values, which estimate was arrived at on the basis 
of a large number of calculations made on domains of differing length, on different 
mesh grading strategies near the cylinder, and on a single much larger calculation. 

The main results of our calculations are summarized in table 2. The estimates of the 
critical Reynolds number obtained from the eigenvalue calculations are given in the 
third column of the table and can be compared with the values obtained from the 
numerical experiments described in 96. The agreement between the two calculations is 
well within the experimental errors associated with the computations and, in particular, 
an extrapolation of the results from coarse to finer meshes suggests that the critical 
Reynolds numbers on yet more refined meshes would be slightly below the values cited 
in column 3 of the table. Shown in the fourth column of the table, and plotted below 
in figure 9 as a function of d, are the critical values of the Reynolds numbers when 
based on the diameter of the cylinder. Given in the fifth column are Strouhal numbers 
based on the imaginary part of the eigenvalue at bifurcation, the Strouhal number 
being defined as St = d/TU,, where T is the period associated with the Hopf 
bifurcation. As discussed above, the loss of stability of the primay flow, as revealed by 
our calculations, occurs at a symmetry-breaking Hopf bifurcation, the structure of 
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FIGURE 7. An example of the kind of mesh used for the eigenvalue calculations. Here L = 10.5, 
L, = 3.0, d = 0.4. This mesh had 13056 degrees of freedom associated with it. 

FIGURE 8. The components of the real part of the null-eigenvector associated with the bifurcation 
calculation. (a) The u-component (the dashed contours are the negative of the continuous ones); (b) 
the v-component. Here L = 10.5; L, = 3.0; d = 0.4. 

d 

0.10 
0.15 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 

~ 

23 1 
~ 

- 

166 

105 
- 

R; 
345 
263 
233 
21 1 
194 
166 
131 
106 

Rf 
51.6 
58.8 
69.0 
92.0 

110.1 
114.2 
103.6 
92.9 

St 

0.122 
0.137 
0.158 
0.215 
0.286 
0.369 
0.463 
0.567 

TABLE 2.  Estimates of the critical Reynolds numbers for the loss of stability of the primary solution 
for flow past a cylinder, for various values of the cylinder diameter, d. The column headed R,* gives 
estimates based on the calculations described in $6 and that headed RZ is based on the eigenvalue 
calculations; the column headed Rf is the critical Reynolds number based on the cylinder diameter, 
as computed from the eigenvalue calculations. The column headed St gives the Strouhal number at 
bifurcation. 

which can be discerned from the plots shown in figure 8 of the u- and v-components 
of the real part of the null eigenvector (the complex eigenvector associated with the 
eigenvalue having zero real part at the bifurcation point). The u-velocity component of 
the low-Reynolds-number ' symmetric' flow has reflectional symmetry about the line 
y = 0 and the v-velocity component is antisymmetric. The velocity components of the 
null symmetry-breaking eigenvector must have the opposite symmetries and indeed it 
can be seen that the u-component of the real part of the eigenvector is antisymmetric 
about the centreline and the v-component is symmetric. It is also seen that the 
magnitude of the eigenvectors decayed rapidly downstream of the cylinder, reinforcing 
the claim that the results presented here should be nearly independent of the 
downstream extent of the domain. The u- and v-velocity components of the imaginary 
part of the eigenvector were similar. 

Extensive calculations have also been made to investigate the so-called ' free-stream ' 
case, namely the problem considered by Jackson (1987) as described in $1, meant to 



Bifurcation for  $ow past a cylinder between parallel planes 39 

120 

0.2 0.4 0.6 0.8 
d 

FIGURE 9. The results of the eigenvalue calculations of the critical Reynolds number, based on the 
diameter of the cylinder, as a function of blockage ratio d. The point represented by the black square 
denotes the value obtained from the ‘ free-stream’ case, meant to simulate an unbounded domain. 

simulate flow in an unbounded domain. Our experiments included extensions to the 
domain in both the downstream and lateral directions, as well as experimenting with 
the gradation and size of the mesh, but the boundary conditions were kept the same 
as those employed by Jackson. By and large, the results of the present calculations are 
in fairly close agreement with those given by Jackson. Thus, for example, we have 
estimated the critical Reynolds number for the free-stream case to be 47.9 with a 
corresponding Strouhal number of 0.138, to be compared with Jackson’s respective 
estimates of 46.2 and 0.138. Shown in figure 9 is a plot of the computed critical 
Reynolds numbers (based on the cylinder diameter), as a function of d, and also 
included in the figure is the free-stream value, to which we have chosen to assign the 
value d = 0. 

8. Concluding remarks 
It is apparent from the above discussion that the current evidence concerning the 

nature of the bifurcation of the steady flow past a cylinder or sphere with increasing 
Reynolds number is in a somewhat confused state. For flow past a cylinder, the 
experiments are fairly uniform in suggesting that an unsteadiness appears in the wake 
at a Reynolds number of 35 or thereabouts, whereas the numerical experiments of 
Jackson (1987) indicate a loss of stability to a Hopf bifurcation at a Reynolds number 
of approximately 46. For flow past a sphere there is experimental evidence for the 
bifurcation to be to a time-periodic flow (Taneda 19563) and there is also evidence for 
the bifurcation to be to a symmetry-breaking steady flow (Nakamura 1976; Wu & 
Faeth 1993). Computationally it has been suggested, on the one hand, that the 
bifurcation is to a symmetry-breaking Hopf flow and, on the other, that it is to 
symmetry-breaking steady flow. 

It is our view that the main difficulties associated with these problems arise, both 
experimentally and computationally, through the desire to approximate flows on 



40 J.-H. Chen, W. G .  Pritchard and S.  J .  Tavener 

unbounded domains and that, if the flow be confined between parallel planes or to a 
circular pipe, the problem becomes much more manageable. The reason for this is that 
the asymptotic structure of the flow, both upstream and downstream of the body, is 
determined by the influence of the confining walls, so that the flow on the apparently 
unbounded domain of the pipe can be closely approximated by a Dirichlet problem for 
flow on a bounded domain. The confinement of the flow between parallel planes, or to 
a circular pipe, does not appear to change the physical structure of the flow or its 
bifurcation properties in a dramatic manner, especially if the ratio of the diameter of 
the cylinder to the separation between the walls is fairly small. 

Thus, in the present paper, it is suggested on the basis of two entirely different kinds 
of numerical experiments, that the steady flow past a cylinder confined between parallel 
planes loses stability, with increasing Reynolds number, through a symmetry-breaking 
Hopf bifurcation, with the value of the critical Reynolds number at bifurcation being 
dependent on the diameter of the cylinder relative to the separation of the walls. 

The same techniques may be applied to the case of flow past a sphere in a circular 
pipe and, using such, Tavener (1994) has determined the bifurcation to be to an 
asymmetric steady flow, breaking the O(2)-symmetry of the original flow, to be 
contrasted with the bifurcation in the two-dimensional case to an asymmetric, 
unsteady Hopf flow. 
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